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A Two-Level Laser from Another Viewpoint
Babak Parvin

Physics Department, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55181-
83111

parvin@maragheh.ac.ir

Abstract- The behavior of a two-level atom trapped in a single-mode optical cavity is examined in the steady state. The
describing master equation of the system is numerically solved in the atom-cavity basis. The semiclassical and quantum
treatments in the atom-cavity system can be derived based on the written equations. The outcomes of the simulations
resulting from the master equation confirm the accuracy of these two separate behaviors.

Keywords: density matrix, lasing, optical cavity, photon antibunching, two-level atom.



The 28" Iranian Conference on Optics and Photonics (ICOP 2022)
The 14" Iranian Conference on Photonics Engineering and Technology (ICPET 2022)

Shahid ChamranUniversity of Ahvaz, Khuzestan, Iran, Feb. 1-3,2022.

1. Introduction

In completing the topics given in [1], another
method in solving the master equation is mentioned
here. In the previous work [1] to solve the
describing master equation of the atom-cavity
system, a combination of the continued fractions
and quantum optics toolbox methods was used, but
here to solve the same equation, the method of
solving equations in the atom-cavity basis has been
utilized. Due to the lack of space, not all content can
be illustrated here and [1] can be referred for a more
complete detail.

2. Model
A two-level atom enclosed in a single-mode optical
cavity. The 1-2 atomic transition is incoherently
pumped at the rate of I"". The atom-cavity coupling
constant is g and the 1-2 atomic transition
frequency is at the resonance with the cavity one.
The spontaneous emission coefficient from level 2
to 1 is equal to ¥ and the cavity decay rate is K.
The master equation of the atom-cavity system is:
p= |:g(a12121 - a-bzllz ),PJ
+?(2A21PA12 —4,p—p4, )
o (M
+E(2A12,DA21 - Azzp - pAzz)

Jrg(ZapaT —a*ap—pa*a),

by using the master equation, the temporal evolution
of the underneath quantities can be written as:

All =-8 <‘2112aT> _g<‘2121“> 4, +y4,, (2
Au :g<12[11a>—g<12[22a>—0.5(r'+7)A12, 3)
Azz =g<A21a>+g<A12aT>+F'A” 74y, “
a=-g4,—0.5ka, Q)
in the semiclassical approximation in which the
correlations of the atom and cavity can be ignored,
the above equations take this form:

A, =—gAd,a" —gA, 0 —T'4, +yA,, (6)
A, =gd, o —gAd,a—0.5(I"+y) 4,, (7)
A, =g, a+gd,a’ +T'A, -y A, (8)
a=-g4,-0.5ka, )

by replacing 4, = 4, and " = in the above

equations, we will have:

A, =-2gA,a-T"4,+yA,, (10)
4, =gda-gh,a—05(T"+y)4,, (11)
A, =2gA,a+T"4, —y4,, (12)
a=-g4,-0.5ka, (13)
by eliminating the first level population, we have:

/llz =ga—2gA22a—O.5(F’+}/)A12, (14)
4, =2g4,a+T'—(I'+y) 4, (15)
a=-g4,—0.5ka, (16)

after solving the above equations in the steady state,
we arrive at m =0 or:

m=-0.5p> +(0.5N,' 1) p—0.5(N; +1),(17)
in the above relations, these parameters
N, =K;//(4g2), N =y /(4g2), p=T"/y,
m=n/N, and n=|af are applied. The
numerical value of N, =0.05 is applied in all
diagrams in the subsequent sections.

3. Atom-Cavity Basis
To compare the semiclassical pattern with a

completely quantum model, we examine the
behaviour of the system at an arbitrary pumping

p=15p,, where p, isthesmaller root of Eq. (17)
which reveals the laser threshold. In the atom-cavity

basis, the temporal evolution of the different
elements of the density matrix are obtained from:

Puins = _g\/;pn—l,z;n,l - g\/;pn,l;n—lj
_(F’+Kn)pn,l;;1,l +7/pn,2;n,2 (18)
+K(7’l + 1) pn+1,1;n+1,1 >
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p"*m:n,l - g\/;pn,l;n,l o g\/;pn—l,Z;nfl,Z
_0.5(1—‘!+7/+K(zn_l))pn—l,Z;n,l (19)

TR\ (” + l)pn,Z;n+l,l )
Proma =&NNHLP, 1+ 8VR+1P, 50,

+F,pn,1;n,1 - (7 + Kn) pn,z;n,z (20)
+i(n+1)p

n+1,2;n+1,2°

which form a closed and infinite set of equations.
To solve these equations in the steady state, by
truncating these equations in an arbitrary 7 such as
N, those can be brought into Ax =b and finally
one can obtain the unknown matrix x. When the
answer of Xx is acceptable that its values do not
change for N—1 and N +1. By specifying the
matrix x, the following physical quantities can be

obtained:

4, = <‘2122>’ (21
m= <a7a>/N7, (22)
g(2) (0) = < TZaz> / <aTa>2 , (23)

which indicates the second level population, scaled
photon number and second-order coherence
function at zero-time delay, respectively. In Fig. 1,
the scaled photon number curves are plotted in two
separate intervals. The depicted results show that for

large N ‘s the semiclassical behaviours prevail in
the system and with decreasing N e the deviation

from the semiclassical case increases and the
quantum processes are expected to appear in the
system.
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Fig. 1: The curvesof m for different Ny ‘s

along with the semiclassical case in terms of p
at two various intervals

In Fig. 2, the second-order coherence function is
used to determine the behaviour of the emitted light.

For the largest N, at below threshold, the radiated

light is thermal and becomes coherent at above
threshold and gets thermal again as the pump

increases further. As N, decreases the light

becomes bunched. For the lowest Ny and in the

weak driving limit, the light denotes the
antibunching characteristic. Therefore, the results of
this section display that for large enough N, ’s, the

behaviours of the semiclassical laser emerge in the

system and for small enough N,'s and in the weak

driving limit, the antibunched light is emitted which
is a quantum light. The drawn outcomes in Figs. 1
and 2 are in complete agreement with those of [1].
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Fig. 2: The graphs of g(z) (O) for several Ny ‘s

versus p intwo different domains

4. Photon Antibunching

Here we want to see that what quantum effects

appear in the system for small N ‘s. In the weak

driving limit I < y which is equivalentto p <1,
Egs. (18) to (20) can be expanded to the second
order of T"". Using these equations, one can say that

Poiny and p . are of the order of n with
respect to I'" and Prrna is of the order of n+1.

By opening the given equations to the leading order:

pO,l;O,l = _F'IDO,I;O,I + 7/p0,2;0,2 + Kpl,l;l,l ’ (24)
pl,l;l,l = _gp0,2;1,1 - gpl,l;o,z - Kpl,l;u’ (25)
p2,1;2,l = _g\/zpl,z;z,l - g\/apz,l;l,z - 2Kp2,1;2,1 > (26)

pO,Z;],l =8Pi111 ~8Pos0 _0'5(7+K) Pos (27)
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pl,2;2,1 = g\/EpZ,I;LI - g\/zpl,z;l,z
-0.5 (7/ + 3K) Praas
po,z;0,2 =8Pi102 1 8Popas T F'pO,I;O,l = VPo20,2> (29)

(28)

p1,2;1,2 = g\/Epz,m,z + g\/Epl,Z;Z,l +r’pl,];],l

_(?/+K)p1,2;1,2’
which from a closed set of equations. In the weak

(30)

driving limit, the population of the first level to the
first order of T"" can be written as:

Poror T P = 1, (31)
by solving these equations in the steady state:
()/ + K) (1 +N, )
Poros = P} (32)
(y+x)(1+N,)+T
r/
g1 = s (33)
pl,],l,l (7+K)(1+NA) pO,l,O‘l
K
Poros =| 1+=— (7/+K) JZRERE (34)
4g
rl
p2,1;2 1 = (35)

- p1,1;1,1’
(}/+3K)(1+4I;2(}/+ K))

now the second level population, second-order
coherence function to the leading order are derived

from:
N +NN,+N°
= (¥, + NN, Az)p , (36)
N, +NN,+N,+N,+N p
2
o 2N (N,p+N +N,+N,N +N}) -

~ N’+N,N+4N,N’+3N,N, +3N}’
which relation (37) is equal to that one written in
[1]. Now the above functions can be plotted under
these conditions N, <1 and Ny < Nj , although
to apply these conditions the two variables Taylor
expansion method can be used similar to that of
used in [1], but here this method is not applied since
the mentioned approximations show their effects
directly on the drawn curves. In Fig. 3(a), the curves

of g (0) are depicted for different N , ‘s against

p . The dashed curves are plotted according to

Eq. (23) and the solid lines are drawn based on Eq.
(37). With the decline of N,, the obtained results

become closer and closer to those of the simulations
and stronger antibunching phenomenon occurs.
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Fig. 3: (a) The emergence of photon
antibunching effects, (b) The population of the
second atomic levelin two distinct cases for

small N ‘sinterms of p

In Fig. 3(b), the 4,, curvesare drawn for some N,

‘s versus p . The solid lines are plotted according to
Eq. (36) and the dashed diagrams are depicted based
on Eq. (21). By reducing N,, the achieved results

become close to the simulation ones and this
indicating that the applied approximations in this
section are acceptable.

5. Conclusions

In this work, the different behaviours of the two-
level atom enclosed in the single-mode optical
cavity are theoretically examined. The master
equation describing the atom-cavity system is
solved numerically in the density matrix basis. The

results show that for large N ‘s, the system

unravels the behaviour of the semiclassical laser,

and for small N, ‘s and in the weak driving limit,

the photon antibunching quantum feature appears in
the system. The brought results appropriately verify
the obtained findings in [1] which applied other
approaches to solve the master equation.
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